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The application of a new implicit unconditionally stable high-resolution TVD scheme to 
steady-state calculations is examined. It is a member of a one-parameter family of explicit and 

implicit second-order accurate schemes developed by Harten for the computation of weak 
solutions of one-dimensional hyperbolic conservation laws. This scheme is guaranteed not to 
generate spurious oscillations for a nonlinear scalar equation and a constant coethcient 
system. Numerical experiments show that this scheme not only has a fairly rapid convergence 
rate, but also generates a highly resolved approximation to the steady-state solution. A 
detailed implementation of the implicit scheme for the one- and two-dimensional compressible 
inviscid equations of gas dynamics is presented. Some numerical computations of one- and 
two-dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this 
new scheme. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

Conventional shock capturing schemes for the solution of nonlinear hyperbolic 
conservation laws are linear and &-stable (stable in the &-norm) when considered 
in the constant coefficient case [l]. There are three major difficulties in using such 
schemes to compute discontinuous solutions of a nonlinear system, such as the 
compressible Euler equations: 

(i) Schemes that are second (or higher) order accurate may produce 
oscillations wherever the solution is not smooth. 

(ii) Nonlinear instabilities may develop in spite of the &-stability in the con- 
stant coefficient case. 

(iii) The scheme may select a nonphysical solution. 

It is well known that monotone conservative difference schemes always converge 
and that their limit is the physical weak solution satisfying an entroy inequality. 
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Thus monotone schemes are guaranteed not to have difficulties (ii) and (iii). 
However, monotone schemes are only first-order accurate. Consequently, they 
produce rather crude approximations whenever the solution varies strongly in space 
or time. 

When using a second- (or higher) order accurate scheme, some of these dif- 
ficulties can be overcome by adding a hefty amount of numerical dissipation to the 
scheme. Unfortunately, this process brings about an irretrievable loss of infor- 
mation that exhibits itself in degraded accuracy and smeared discontinuities. Thus, 
a typical complaint about conventional schemes which are developed under the 
guidelines of linear theory is that they are not robust and/or not accurate enough. 

To overcome the difficulties, we consider a new class of schemes that is more 
appropriate for the computation of weak solutions (i.e., solutions with shocks and 
contact discontinuities) of nonlinear hyperbolic conservation laws. These schemes 
are required (a) to be total variation diminishing in the nonlinear scalar case and 
the constant coefficient system case [2, 31 and (b) to be consistent with the conser- 
vation law and an entropy inequality [4, 61. The first property guarantees that the 
scheme does not generate spurious oscillations. We refer to schemes with this 
property as total variation diminishing (TVD) schemes (or total variation non- 
increasing, TVNI, [2]). The latter property guarantees that the weak solutions are 
physical ones. Schemes in this class are guaranteed to avoid difficulties (ik(iii) 
mentioned above. 

The class of TVD schemes contains monotone schemes, but is significantly larger 
as it includes second-order accurate schemes. Existence of second-order accurate 
TVD schemes was demonstrated in [2, 3, 7, 81. Unlike monotone schemes, TVD 
schemes are not automatically consistent with the entropy inequality. Consequently, 
some mechanism may have to be explicitly added to a TVD scheme to enforce the 
selection of the physical solution. In [2, 93, Harten and Harten and Hyman 
demonstrate a way of modifying a TVD scheme to be consistent with an entropy 
inequality. 

In [ 10, 111, we have examined the application of an explicit second-order 
accurate TVD scheme [2] to steady-state calculations. Numerical experiments 
show that this explicit scheme generates nonoscillatory, highly accurate steady-state 
solutions. 

To retain the characteristic of highly resolved steady-state solutions by explicit 
second-order accurate TVD schemes without the disadvantage of slow convergence 
rate of explicit schemes, we considered in [lo] the following two possibilities: 
(1) First, obtain an approximation to the steady state by using a conventional 
implicit scheme, and then use a second-order accurate TVD scheme as a “post- 
processor.” (2) Use a first-order accurate implicit scheme in delta-formulation and 
replace the explicit operator by an explicit second-order accurate TVD scheme. 

We have found (in one dimension) that both these strategies reduce the overall 
computational effort needed to obtain the steady-state solution of the explicit 
second-order accurate TVD scheme. Alternative (1) is a possible way of speeding 
up the convergence process by providing a better initial condition for the explicit 
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second-order accurate TVD scheme. Alternative (2) can be viewed as a relaxation 
procedure to the steady-state solution. Numerical experiments of [lo] show that 
the computational effort is not drastically decreased, although the stability limit is 
higher than the explicit counterpart. 

Recently, Harten [3] has extended the class of explicit TVD schemes to a more 
general category which includes a one-parameter family of implicit second-order 
accurate schemes. Included in this class are the commonly used time-differencing 
schemes such as the backward Euler and the trapezoidal formula. 

This paper is a sequel to [lo]. Here, we investigate the application to steady- 
state calculations of this newly developed implicit second-order accurate scheme 
that is unconditionally TVD. This scheme is guaranteed not to generate spurious 
oscillations for one-dimensional nonlinear scalar equations and constant coefficient 
systems. Numerical experiments show that this scheme has a fairly rapid con- 
vergence rate, in addition to generating a highly resolved approximation to the 
steady-state solution. We remark that all of the analysis on the new scheme is for 
the initial value problem. The numerical boundary conditions are not included. 

In the present paper, we stress applications rather than theory, and we refer the 
interested reader to [2, 31 for more theoretical details. In the next section, we will 
briefly review the notion of TVD schemes and describe the construction of the 
second-order accurate TVD scheme from a first-order accurate one for scalar one- 
dimensional hyperbolic conservation laws. The generalization to one-dimensional 
hyperbolic systems will be described in Section 3. A description of the algorithm 
and numerical results for the one- and two-dimensional compressible inviscid 
equations of gas dynamics will be presented in Sections 4 and 5. 

2. TVD SCHEMES FOR ONE-DIMENSIONAL SCALAR 
HYPERBOLIC CONSERVATION LAWS 

Several techniques for the construction of nonlinear, explicit, second-order 
accurate, high-resolution, entropy satisfying schemes for hyperbolic conservation 
laws have been developed in recent years. See, for example, van Leer [7], Colella 
and Woodhard [12], and Harten [2]. From the standpoint of numerical analysis, 
these schemes are TVD for nonlinear scalar hyperbolic conservation laws and for 
constant coefficient hyperbolic systems. TVD schemes are usually rather com- 
plicated to use compared to the conventional shock-capturing methods such as 
variants of the Lax-Wendroff scheme. 

In [3], Harten introduced the notion of implicit TVD schemes. To keep this 
paper somewhat self-contained, we will review the construction of the backward 
Euler TVD schemes for the initial value problem. This is the only unconditionally 
stable TVD scheme belonging to the one-parameter family of TVD schemes con- 
sidered in [3]. Before we proceed with the description of the construction, we will 
first give preliminaries on the definition of explicit and implicit TVD schemes and 
show a few examples. 
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2.1. Explicit TVD Schemes 

Consider the scalar hyperbolic conservation law 

au afw=, 
at+- ax ’ (2.1) 

where a(u) = aflau is the characteristic speed. A general three-point explicit dif- 
ference scheme in conservation form can be written 

u? + l = ui” - ncjy+ I,* - 3;- l/2)> J (2.2) 

where 37+ 1,2 = f( ~7, uj’+ r ), I= At/Ax, with At the time step, and Ax the mesh size. 
Here, ~7 is a numerical solution of (2.1) at x = j Ax and t = n At and j’ is a 
numerical flux function. We require the numerical flux function 3 to be consistent 
with the conservation law in the following sense: 

3c5 Uj) =“I@,). (2.3) 

Consider a numerical scheme with numerical flux functions of the form 

&+I,*=+ [~+++1-Q(aj+1/2)Aj+1/2~1, (2.4) 

wherefi=f(u,),dj+,,,u=u,+,-u,, and 

a ,+ l/2 = 
t-G+ I -f,)lA.j+ 1/2u, A,+ I/~u # 0, 
4yj), ~t~+,,~u=O. (2.5) 

Here Q is a function of uj+ 1,2 and 1. The function Q is sometimes referred to as the 
coefficient of numerical viscosity. Figure 2.1 shows some examples for the possible 
choice of Q. Three familiar schemes with the numerical fluxes of the form (2.4) are 

-. 5 -6 0 s .5 1.0 
z 

FIG. 2.1. Sample of the Q(z) functions. 
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(a) A form of the Lax-Wendroff (L-W) scheme with 

~+1/2=~Cfj+fj+1-Iz(uj+,/2)2dj+1/2ul, 

where Q(Qj+ 112) = l(aj+ 1,d2. 
(b) Lax-Friedrichs (L-F) scheme with 

V-6) 

(2.7) 

where Q(aj+ 1,2) = l/k 
(c) A generalization of the Courant-Isaacson-Rees (GCIR) scheme with 

fj+*,2=$ CJ’j+f,+l- lUj+1/21 Aj+1/2ul, (2.8) 

where Q(Uj+ 1,~) = lUj+ 4. 

We define the total variation of a mesh function u to be 

TV(u)= f luj+l -ujI = f lA,+1/2~l. (2.9) j= -m j= -cc 

We say that the numerical scheme (2.2) is TVD if 

TV(u”+‘)6TV(u”). (2.10) 

It can be shown that a sufficient condition for (2.2) together with (2.4) to be a 
TVD scheme is [2], 

AC,< 1,2 = '1 2 Eeuj+ l/2 + Q(q+ 1,211 L 0, 

‘CJ”+ l/2 =i [uj+ l/2 + Q(uj+ 1,211 > 0, 

‘Cc; l/2 + CA l/2) = nQ(aj+ 112) G 1. 

(2.1 la) 

(2.11b) 

(2.1 lc) 

Applying condition (2.11) and/or (2.10) to the above three examples, it can be 
easily shown that the L-W scheme is not a TVD scheme, and the latter two 
schemes are TVD schemes. Note that there is a further distinction between the L-F 
scheme and GCIR scheme: the L-F scheme is consistent with an entropy inequality 
whereas the GCIR is not [6]. 

It should be emphasized that condition (2.11) is only a sufficient condition; i.e., 
schemes that fail this test might be still TVD. The L-W scheme, besides failing con- 
dition (2.1 l), does not satisfy (2.10). 
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2.2. Implicit TVD Schemes 

Now we consider a one-parameter family of three-point conservative schemes of 
the form 

24” + l + lJj(fy;1’,2 I -f;‘lg = q - 41 - r1)(fy+ I,2 -fp l/2)? (2.12) 

where q is a parameter, A= At/Ax, f;+ 1,2 = f( u,“, u,“+ r ), f;:r& = f( U; + I, u,“:,’ ), and 
f(u,, uj+,) is th e numerical flux (2.4). This one-parameter family of schemes con- 
tains implicit as well as explicit schemes. When q = 0, (2.12) reduces to (2.2), the 
explicit method. When q # 0, (2.12) is an implicit scheme. For example: if u = t, the 
time differencing is the trapezoidal formula, and if q = 1, the time differencing is the 
backward Euler method. To simplify the notation, we will rewrite (2.12) as 

L.u n+l=R.u”, 

where L and R are the finite-difference operators 

(L’u),=uj+~r(-fi+1/2-f;-1/2), 

(R.u)j=uj-1(1-r)(J;+,/2-f,-,/2). 

A suflicient condition for (2.12) to be a TVD scheme is that 

TV( R . u) 6 TV(u), 

TV( L . v) B TV(o). 

A sufficient condition for (2.15) is the CFL-like restriction 

(2.13) 

(2.14a) 

(2.14b) 

(2.15a) 

(2.15b) 

(2.16) 

where aj + 1,2 is defined in (2.5). For a detailed proof of (2.15) and (2.16), see [3]. 
Observe that the backward Euler implicit scheme, q = 1 in (2.12), is unconditionally 
TVD, while the trapezoidal formula, q = 4, is TVD under the CFL-like restriction of 
2. The forward Euler explicit scheme, r~ = 0 or (2.2), is TVD under the CFL restric- 
tion of 1. We remark that three-point conservative TVD schemes of the form (2.12) 
are generally first-order accurate in space. When q = 1, the scheme is second-order 
accurate in time. 

2.3. First-Order Accurate Backward Euler Implicit TVD Scheme 
In this paper, we are only interested in efficient high-resolution time-dependent 

methods for steady-state calculations. The backward Euler implicit TVD scheme is 
the best choice in this one-parameter family of TVD schemes. Therefore, we will 
only review the proof that the backward Euler scheme is unconditionally TVD. In 
Section 2.4, we will describe the technique of converting the first-order accurate 
unconditionally TVD scheme (2.12) with q = 1 into a second-order accurate one. 
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The backward Euler three-point scheme in conservative form can be written as 

ui”’ l+ n(f;;;,, -f;$,, = 24;. (2.17a) 

For the purpose of this paper, the function Q(z) in (2.4) is chosen to be 

(2.17b) 

which is a nonvanishing, continuously differentiable approximation to 1~1. This is 
one way of modifying Q in (2.8) so that scheme (2.2) together with (2.8) is an 
entropy satisfying TVD scheme [2]. For convenience, we introduce the notation 

C’(z) = $[Q(z) f z] (2.18a) 

and note that 
C’(z)>0 for all z. (2.18b) 

Using (2.5) and (2.18a), we can rewrite the numerical fluxes f;.+ 1,2 in (2.4) as 

~+~/~=fj-C-(~j+~/~)Aj+~/~u, (2.19a) 

j;.- 112 =fi- C+ (aj- 112) A,- 112~. (2.19b) 

It follows from (2.19) that (2.17) can be written in the form 

u?+’ - J.C-(a~~~,,) A,, I,2~n+1 + K’(uJ’?~,,) Aj- 1,2~“+1 = u;. I (2.20) 

Now, if 6 = 0 in (2.17b), then C’(z) = (lzl f z)/2, and (2.20) is a first-order 
accurate, upstream differencing, backward Euler implicit scheme. Equation (2.17) 
differs from the upstream spatial differencing (with 6 =0) by the addition of a 
numerical viscosity term with a coefftcient 6 > 0. 

We show now that C’(z)30 implies that the scheme (2.17) is unconditionally 
TVD (i.e., condition (2.10) is satisfied, independent of the value of A = At/Ax in 
(2.17a). 

To see that, we subtract (2.20) at j from (2.20) at j + 1 and get after rearranging 
terms that 

C1+~C~,/2+~Cj++1/21Aj+,/2Un+1 

=Aj+ l/2 lln + lCj”- l/ZAj- l/Z” n+l +K,~3/2Aj+3,2~n+? (2.21a) 

Here Cj$ 1,2 = C * (a;:$, ). Next we take the absolute value of (2.21a) and use 
(2.18b) and the triangle inequality to obtain 

Cl+~C&,/2+JC~,/,l lAj+1/2Unf11 
G lAj+ I/ZU~I + ‘CjT 112 IAj- 112~ n+ll +~C~3/21Aj+3/2Un+‘I. (2.21b) 
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Rearranging terms, we get 

/A I+ 112 u”+‘I d Pi+,,, ‘“l+‘CC,~~/21’j+~/2~n+‘I-C,~~/~IAj+~,~~nf’l] 

-‘CC~+,,,,IA,+,,Z~~~‘I-C/+_~/~~~~~~,~U~+~~]. (2.21c) 

That is, 

IA,+ 1/2u ‘+‘I 6 IAj+l/2U”l +%(Ej+l-Zj), (2.21d) 

where 

~j=CCi+1pIA,+1/2Un+‘I -CJ+-~,/~~A,-~~/~U”+~I. (2.21e) 

Summing (2.21d) fromj= -co toj= +a~, we obtain (2.10); thus proving that our 
backward Euler implicit scheme is unconditionally TVD. 

2.4. Conversion to Second-Order Accurate Scheme 

Next, we want to briefly review the design principle behind the construction of 
second-order accurate TVD schemes. This is a rather general technique to convert a 
three-point first-order accurate (in space) TVD scheme (2.12) into a five-point 
second-order accurate (in both time and space, or just space) TVD scheme of the 
same generic form. The design of high-resolution TVD schemes rests on the fact 
that the exact solution to (2.1) is TVD due to the phenomenon of propagation 
along characteristics, and is independent of the particular form of the flux f(u) in 
(2.1). Similarly, the first-order accurate scheme is TVD subject only to the CFL-like 
restriction (2.16) independent of the particular form of the flux. Thus to achieve 
second-order accuracy while retaining the TVD property, we use the original TVD 
scheme with an appropriately modified flux (f + g), i.e., 

,:+I +%(7r=,:,-7r’:,,)=u,“, (2.22a) 

.~+1/2=~Cf;+fi+~+gj+gj+1-Q(a,+1/2+~j+1/2)Aj+~/~~l, (2-22b) 

where 

Y,+ l/2 = 
k,+ I - g,)lAj+ (/2u, Aj+ 1/2u + 0, 
0, A ,+1,2u=o. 

(2.22c) 

The requirements on g are: (1) The function g should have a bounded y in 
(2.22~) so that (2.22a) is TVD with respect to the modified flux (f+ g). (2) The 
modified scheme should be second-order accurate (except at points of extrema). In 
[2, 33, Harten devised a recipe for g that satisfies the above two requirements. We 
will use this particular form of g for the discussion here. It can be written 

(2.22d) 
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with oj+ 1,2 = o(aj+ i,J and we choose 

c(z) = Q(z) > 0 (2.22e) 

for steady-state applications. It has the property that the steady-state solution is 
independent of At. Or, we choose 

CT(z) = i@(z) + AZ*) > 0 (2.22f) 

for time-accurate calculations. Note that if a(z) = (Q(z) + Lz*)/2, then (2.22) is 
second-order accurate in both time and space [3]. For transient calculations, 
second-order accurate in time is preferred. 

The form of g in (2.22d) satisfies the relations [3] 

gj=gt"j-l, uj3 uj+lh g(u, 6 u) = 0, 

IYj+ l/21 = lgj+ l- gjlll”j+ 1 -#jl G d”j+ I/2), 

(2.23a) 

(2.23b) 

g=Axo(a);+O((Ax)‘). 

Relation (2.23a) shows that the modified numerical flux (2.22b) is consistent with 
f(u). Relation (2.23b) shows that the mean-value characteristic speed rj+ ,,z (2.22~) 
induced by the flux g is uniformly bounded. Relation (2.23~) implies that (2.22b) is 
second-order accurate in space. The form of g appears more complicated than it 
really is. The various test functions in (2.22d) can be viewed as an automatic way of 
controlling the numerical flux function so that (2.22) is TVD. 

The scheme (2.22) can be rewritten in the form (2.20) as 

where C’(a + y)J’:;,* - C’(aj”:& + yg:&); i.e., C’ is now a function of (a + y) 
instead of a. The modified scheme (2.22) is of the same generic form as the original 
first-order scheme (2.17). Therefore (2.22) is an upstream differencing scheme with 
respect to the characteristic field (a + y). Moreover, we have the relation 

sign(a + y) = sign(u) (2.25) 

for IzI 2 6, with z = a or (a+ y) in (2.17b). Hence (2.24) is also an upstream dif- 
ferencing scheme with respect to the original characteristic field a(u). 

Because of (2.23a), the numerical flux (2.22b) of the second-order accurate TVD 
scheme depends on four points, i.e., yj+ 1,2 = T(Tcu~- , , uj, uj+ 1, uj+ *), and thus (2.22) 
is formally a live-point scheme. We note, however, that 

lb, 4 4 WI = f(u) (2.26) 

for all v and w. Hence, for practical purposes, such as numerical boundary con- 
ditions, (2.22) can be regarded as essentially a three-point scheme. 
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We turn now to examine the behavior of TVD schemes around points of 
extrema, by considering their application to data, where 

u/- 1 <"j=u,+I 3”,+2. (2.27) 

In this case gj = g, + L = 0 in (2.22d), and thus the numerical flux (2.22b) becomes 
identical to that of the original first-order accurate scheme (2.4); consequently, the 
truncation error of (2.22) deteriorates to O((dx)‘) at j and j+ 1. This behavior is 
common to all TVD schemes. Thus, for a second-order accurate scheme to be 
TVD, it has to have a mechanism that switches itself into a first-order accurate 
TVD scheme at points of extrema. Because of the above property, second-order 
accurate TVD schemes are genuinely nonlinear (i.e., they are nonlinear even in the 
constant coefficient case). 

Extension of the one-parameter family of three-point TVD schemes (2.12) to 
second-order TVD schemes follows the same procedure except (2.22f) becomes 

a(z) = @(z) + /I(q - ;, z2. (2.28) 

2.5. Enhancement of Resolution by Artificial Compression 

The technique to convert the first-order accurate TVD scheme (2.12) into a 
second-order accurate one is closely related to the concept of artificial compression 
[13, 143. 

Truncation error analysis shows that the first-order accurate scheme (2.12) is a 
second-order accurate approximation to solutions of the modified equation 

(2.29) 

where o(a) is defined in (2.22e) or (2.28). We note that the CFL-like restriction 
(2.16) implies that o(a) 2 0; thus, the right-hand side of (2.29) is a viscosity term. 
Hence the first-order accurate TVD scheme (2.12) is a better approximation to the 
viscous equation (2.29) than it is to the original conservation law. 

We obtain a second-order approximation to au/at + af/ax = 0 by applying the 
first-order scheme (2.12) to the modified flux (f+ g), where g is an approximation 
to the right-hand side of (2.29); i.e., 

g = dxa(a) g + O((fl~)~). (2.30) 

The application of the first-order scheme to (f + g) has the effect of canceling the 
error due to the numerical viscosity to O((~X)~); thus g is an “anti-diffusion” flux. 

If we apply the first-order TVD scheme to (f+ (1 + 0) g), 0 > 0, rather than to 
(f+ g), we find that the resolution of discontinuities improves with increasing 0. 
This observation allows us to use the notion of artificial compression to enhance 
the resolution of discontinuities computed by the second-order accurate TVD 
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scheme (2.22). This is done by increasing the size of g in (2.22d) by adding a term 
that is O((Ax)*) in regions of smoothness, e.g., 

with 

gj=(l +COOj) gj, o>o (2.31a) 

(2.31b) 

Using gj (2.31) instead of g, makes the numerical characteristic speed more con- 
vergent, and therefore improves the resolution of computed shocks. Since 
13 = O(dx), this change does not adversely affect the order of accuracy of the 
scheme. See [2] for more details. From numerical experiments, o = 2 seems to be a 
good choice. 

We remark that applying too much artificial compression in a region of expan- 
sion (i.e., divergence of the characteristic field a = afl&) may result in violation of 
the entropy condition. Hence when applying artificial compression, we have to 
either turn it off in regions of expansion or limit the size of o in (2.31a), say, by the 
value that makes (2.22) with (2.31a) third-order accurate (in regions of 
monotonicity). 

2.6. Linearized Version of the implicit TVD Scheme 

To solve for zJ+’ for the first- or second-order implicit scheme, we have to solve 
a set of nonlinear algebraic equations. To overcome this obstacle, we will present a 
way of linearizing the implicit TVD scheme. The method will destroy the conser- 
vative property but preserve its unconditionally TVD property. We will refer to this 
method as the linearized nonconservative implicit (LNI) form. The LNI form is 
mainly useful for steady-state calculations, since the scheme is only conservative 
after the solution reaches steady state. On the other hand, we have the advantage of 
stability and TVD of an unlimited CFL number. Note that the procedure of obtain- 
ing the LNI form is applicable to both the first- and second-order accurate implicit 
TVD schemes. We will discuss the LNI for the second-order accurate one. To get 
the LNI for the first-order accurate TVD scheme, we simply set g= y =0 in the 
second-order form. 

The LNI form is obtained simply by replacing the coefficients (C+ )n+ ’ in (2.24) 
by (C’ )“, i.e., 

Since C’ > 0, it follows from (2.21) that (2.32) is unconditionally TVD. 
In delta form notation, (2.32) can be rewritten as 

[l -~C-~(a+y)~+,,,dj+,,,+~C+(a+y)~~1,2dj~1,21(Un+1-Un) 

= -x7;+ l/2 -JI:- I/21> (2.33a) 
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where the left-hand side equals 

with d-=u?+‘--uU” and A. I 7 I I+ li2d=dit I -d,. Rearranging terms, we get 

E,dj-1 +E,d,+E,dj+,= -~IIY~+~/~-.T~-~/~I, 
with 

(2.34a) 

E, = -K+(u+y)i”p1,2, 

E,=~+IICC-(U+~):+,,~+C+(,+~)~-,,,I, 
E, = -AC (a + y);, ,,2. 

(2.34b) 

(2.34~) 

(2.34d) 

Here, 3;+ 1/2 is (2.22b))(2.22e) calculated at the time level n. It follows from (2.22b) 
and (2.33a) that the steady-state solution of (2.33) is 

(i) consistent with the conservation form, and 
(ii) a spatially second-order accurate approximation to the steady state of 

the partial differential equation 
(iii) Independent of the time-step At used in the iterations. 

Moreover, the iteration matrix associated with (2.34) is a diagonally dominant, 
tridiagonal matrix. Note that this linearized construction is not trivial, since the 
second-order method is a live-point scheme. Normally the matrix associated with 
(2.34) could have been a pentadiagonal matrix. As mentioned before, (2.32) or 
(2.34) is not in conservation form and therefore should not be used to approximate 
time-dependent solutions (transient solutions). However, it is a suitable scheme for 
the calculation of steady-state solutions. 

We can also obtain another TVD linearized form by setting y = 0 in (2.34), i.e., 

E,dj-,+E,dj+E,dj+,= -JEfr+r/2-JI,“-l/J, (2.35a) 

with 

E, = -AC + (a;- ,,*), 

~2=l+w-(u~+,,,)+C+(u;~,,,)], 

Js = --AC (a,“, 1,2). 

(2.35b) 

(2.3%) 

(2.35d) 

Scheme (2.35) is spatially first-order accurate for the implicit operator and spatially 
second-order accurate for the explicit operator. It can be shown that (2.35) is still 
TVD. 
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3. GENERALIZATION TO ONE-DIMENSIONAL 
HYPERBOLIC SYSTEM OF CONSERVATION LAWS 

In the present state of development, the concept of TVD schemes, like monotone 
schemes, is only defined for nonlinear scalar conservation laws or constant coef- 
ficient hyperbolic systems. The main difficulty stems from the fact that, unlike the 
scalar case, the total variation in x of the solution to the system of nonlinear con- 
servation laws is not necessarily a monotonic decreasing function of time. The total 
variation of the solution may actually increase at moments of interaction between 
waves. Not knowing a diminishing functional that bounds the total variation in x in 
the system case, makes it impossible to fully extend the theory of the scalar case to 
the system case. What we can do at the moment is to extend the new scalar TVD 
scheme to system cases so that the resulting scheme is TVD for the “locally frozen” 
constant coefficient system. To accomplish this, we define at each point a “local” 
system of characteristic fields. This extension technique is a somewhat generalized 
version of the procedure suggested by Roe [15]. 

Now, we briefly describe the above approach of extending the second-order 
accurate TVD schemes to hyperbolic systems of conservation laws 

Here U and F(U) are column vectors of m components and A(U) is the Jacobian 
matrix. The assumption that (3.1) is hyperbolic implies that A(U) has real eigen- 
values a’(U) and a complete set of right eigenvectors R’(U), I= l,..., m. Hence the 
matrix 

R(U) = (R’(U),..., R”(U)) (3.2a) 

is invertible. The rows L’(U),..., L”(U) of R(U) ~ ’ constitute an orthonormal set of 
left eigenvectors of ,A( U); thus 

R- 'AR = diag(a’). 

Here diag(a’) denotes a diagonal matrix with diagonal elements a’. 
We define characteristic variables W with respect to the state U by 

(3.2b) 

W=R-'U. (3.3) 

In the constant coefficient case, (3.1) decouples into m scalar equations for the 
characteristic variables 

awl ,aw/ 
-e&+u z=o, a’ = constant. 

This offers a natural way of extending a scalar scheme to a constant coefficient 
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system by applying it “scalarly” to each of the m scalar characteristic equations 
(3.4). 

Let h1,2 denote some symmetric average of U, and U,, , (to be discussed 
later); i.e., 

uj+l/2= yC"j3 u,+l). (3.5) 

Let a:* ‘12, qc l/2, q!, l/2 denote the respective quantities of a’, R’, L’ related to 
A( U,, ,j2). Let w’ be the vector elements of W, and let c(i+ ,,2 = M$+, - wj be the 
component of A,, 1,2 U = U,, , - U, in the Ith characteristic direction; i.e., 

Aj+ 112 U=Rj+1/2a/+1/2r Uj+,/2=Ri+',/2Alf,/2U. (3.6) 

With the above notation, we can apply scheme (2.22) scalarly to each of the 
locally defined (frozen coe$j$ccient ) characteristic variables of (3. I ) as 

uy + ’ + 1*@y;“=,;, - Fy,j,) = u,“, (3.7a) 

Fj+ 112 = ’ ~(J’j+f’j+~)+i f Cg~+g~+,-Q~~~+,i2+~~+,,2)~~+,,21R~+,,2, (3.7b) 
/= 1 

where 

gf=S.maxCO, min(~~+,,21~~+,,21, S~O;~,,,CX~,,,)], 

S = skn(uj+ ,,2), 
(3.7c) 

and 

I k:+ I 
Yj+1/2= 0 L 

- s:Yu; + I/2> a:+ l/2 # 09 
a;, ,,2 = 0. 

(3.7d) 

Here c$+ ,,2 = c(af+ ,,2), where a(z) is (2.22e) and a:+ ,,2 is (3.6). The corresponding 
ii in (2.3 1) for the added artificial compression term is 

with 

$=(l +fde;,g;, o’>O, (3.7e) 

(y= I4+1,2-~:h 

I@+ I,21 + I+ I,21 
(3.7f) 

The w’ can be different from one characteristic field to another. 
Similarly, we generalize the LNI form (2.33) to the system case by 

[I-‘(,< ,/>A,+ l/2 + iJ,T 1/2Aj- l/21( U”+ ’ - Un) = -A[?+ l,2 - q.. ,,2] (3.8a) 

or 

ElDj-,+E2Di+E:jDi+l= -rl[F~‘+1/2-$‘~,/2], (3.8b) 
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with 

(3.8~) 

(3.8d) 

(3.8e) 

and 

JjS l/2 = R& l/2 diag(C'(a'+ Y'):, ,,2)(R ~ 'I,"+ ,,2, 

Dj= ,,“‘I - Uj’, 

where the left-hand side of (3.8a) is equal to 

(3.8f) 

(3.W 

Dj- ‘Jjy 1/2Aj+ 1120 + ‘Jj? 1/2Aj- I/zD, 

with Aj+,,,2D=Dj,,-Dj. 

(3.8h) 

In the constant coefficient case where A(U) = constant, both (3.7) and (3.8) are 
TVD by construction. However, they are not identical; Eq. (3.7) is fully nonlinear 
while (3.8) is a version with a linearized left-hand side. 

Note that the total variation for the vector mesh function U of the constant coef- 
ficient case is defined as 

WV= f f I4+1,21. (3.9) 
j= -cc ,=I 

A particular form of averaging in (3.5) is essential if we require the scheme (3.7) 
for m = 1 to be identical to the scalar scheme of Section 2, since we have to choose 
(3.5) so that u,!+ 1,2 is the same as the mean value in Eq. (2.5). This can be accom- 
plished by taking the eigenvalues a:+ 1,2 and the eigenvectors Rj+ 1,2 in (3.2) to be 
those of A( U,, U,, I ), where A( Uj, U,, , ) is the mean value Jacobian. This matrix 
should satisfy 

(i) F(U)--F(;O=A(U, V)(U- V), 
(ii) A(U, U)=A(U), 
(iii) A( U, V) has real eigenvalues and a complete set of eigenvectors. 

Roe [ 151 constructs a mean value Jacobian for the Euler equations of gas 
dynamics of the form A( U, V) = A( Y( U, I’)), where !P( U, V) is some particular 
average. We will discuss Roe’s mean value Jacobian in the next two sections. 

4. APPLICATIONS TO ONE-DIMENSIONAL COMPRESSIBLE 

INVISCID EQUATIONS OF GAS DYNAMICS 

In this section we describe how to apply the implicit TVD scheme (3.8) to the 
compressible inviscid equations of gas dynamics (Euler equations). Included in this 
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section are: (1) a detailed description of each of the terms of Eqs. (3.5) and (3.8) for 
the Euler equations, (2) Roe’s form for A( Uj, U,, ,), (3) an algorithm to compute 
U!+ l, (4) a description of the numerical example, and (5) a discussion of the 
numerical results. 

4.1. Description of Algorithm 

In one spatial dimension, the Euler equations of gas dynamics can be written in 
the conservative form as 

au at-(u) o 
at+ dx= ’ (4.la) 

where 

Here U is the vector of conservative variables, F is the flux vector, and m = pu. The 
primitive variables are the density p, the velocity U, and the pressure p. The total 
energy per unit volume e, is defined as 

e = p.2 + pu2/2 (4.lc) 

with E as the internal energy per unit mass. The pressure p for a perfect gas is 
defined as 

P=(Y- 1)Ce-m2/2pl, (4.ld) 

where y is the ratio of specific heats and should not be confused with the yi+ ,,= in 
(2.22~) or yf+ r,* in (3.7d). 

Let A denote the Jacobian matrix aF( U)/aU whose eigenvalues are 

(al, a*, 03) = (u - c, u, u + c), (4.2) 

where c is the local speed of sound. The right eigenvectors of A form the matrix 
R = (R’, R2, R3) given by 

1 1 1 
R= u-c u u+c ) 1 (4.3a) 

H-UC &u” H+uc 

c= u= 
HZ---- 

y-l+Y’ 
(4.3b) 
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and 

with 

l;(b,-:) ;( -b,u+;) ;b2 j 

b,=b,$ 

b 
2 

d-l 
c2 

Using the same notation as in Section 3, the vector a of Eq. (3.6) is 

where 

a,;+ l/2 
2 [ 1 'j+ 112 = 
3 

'j + L/2 

(au - bb)/2 

Aj+ y2P -aa 
(au + bb)/2 

.._y-l 
2 

'j+ l/2 
Aj~,/2e+~AjtI:ZP-uj,,/2Aj+l!2m , 1 

(4.3c) 

(4.3d) 

(4.3e) 

(4.4a) 

(4.4b) 

The simplest form of Vi+ rj2 is 

7 
cj + l/2 

(4.4c) 

uj+1/2= ( uj+ 1 + ujJ/2* (4.5) 

Roe [15] uses a special form of averaging that has the computational advantage of 
perfectly resolving stationary discontinuities. Roe’s averaging takes the form 

Hi+ 112 = 
DHj+,+Hj 

D+l ’ 

C,‘+ l/2 = (Y - 1) Hj + l/2 - i Uj+ 112 > 7 

(4.6a) 

(4.6b) 

(4.6~) 

~=Jpi,,lp,, 
H= 

1 
(y:;)p+ju2. 

(4.6d) 

(4.6e) 
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To use Roe’s averaging, we compute uj+ i,*, cl+ ,12 in (4.2)-(4.4) by (4.6). In the 
numerical experiments for the one-dimensional test problem, we use Roe’s 
averaging. 

Given Uy, for all j, we now list the operations needed to calculate U; + ’ (assum- 
ing a fixed CFL number as input): 

(i) Compute uj = m,/pj and pi. 
(ii) Compute uj+ ,jZ and c,, ,,z from (4.5) or (4.6), calculate 

M=max (l~,+1j2/ +c,+~,~), I 

evaluate aj + ,,2, I= 1,2,3 by (4.4a), and define 

i = AtJAx = p/M, 

where p is the prescribed CFL number as input. 
(iii) Compute ai+ ,,* by (4.2), gi+ i,* by (3.7~). 
(iv) Compute yj+ 1,2 by (3.7d), and pj+ ,,* by (3.7b) and relation (4.3a). 
(v) Compute C’(af+ ,,2 + y:+ ,,z) by (2.18a), with z = ai+ ,,2 + $+ ,,*. 

(vi) Compute Jj?+ ,I* by (3.8f), and B,, &, and &, by (3.8c)-(3.8e). 
(vii) Solve the tridiagonal system (3.8b) for D, and then compute U;+ l from 

(3.W. 

4.2. Numerical Example 

For the numerical experiments, a quasi-one-dimensional nozzle problem was 
selected. The governing equations for the nozzle problem can be written 

ai al;(D) 
at+ x+H(O)=O, (4.7a) 

where 

with IC, the area of the nozzle, a function of x. The nozzle we consider (see Fig. 4.1) 
is a divergent nozzle [16] with 

K(X) = 1.398 + 0.347 tanh(0.8x - 4). (4.7c) 

The steady flow conditions were supersonic inflow, subsonic outflow with a shock. 
In all of the calculations the computational domain was 0 < x < 10. We used a very 
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-I&d ’ tX 

K(X) = 1.398 + 0.347 * tanh (0.8x - 4) 

FIG. 4.1. Divergent nozzle. 

coarse equal mesh spacing of Ax = 0.5 (i.e., 20 spatial intervals), to evaluate the 
resolution of the scheme. 

Initial conditions. We use linear interpolation between the exact steady-state 
boundary values as initial conditions. 

Analytical boundary conditions. We specified all three conservative variables 
p, U, and e for the supersonic inflow, and the variable e for the subsonic outflow. 

Numerical boundary conditions. We used zeroth- or first-order space 
extrapolation to obtain the numerical boundary conditions for the unknown flow 
variables (p and m) at the outflow boundary. Since the spatially second-order 
accurate TVD scheme is a five-point scheme, we also need the values of gi and (3; on 
both boundaries. For convenience, we will use zeroth-order space extrapolation for 
these values. 

4.3. Discussion of Numerical Results 

All of the computations for the quasi-one-dimensional nozzle problem were done 
in single precision on the VAX 11/780 computer (a 6 digit machine). To illustrate 
the stability and/or accuracy of the LNI form of the implicit TVD scheme (3.8b), 
we compare in Fig. 4.2 the computed results with the explicit TVD scheme 
(forward Euler in time, obtained by setting 8, = 0, 8, = Z, and E, = 0 in Eq. (3.8b)), 
a first-order flux-vector splitting scheme [17], and a conventional implicit method 
using backward Euler in time and central spatial differencing with an added fourth- 
order explicit numerical dissipation [IS]. Note that not all 20 points of the 
solutions are plotted in Fig. 4.2. The points missing from both ends of the x axis are 
equal to the exact solution. Figure 4.2a shows the numerical result of the explicit 
TVD scheme. It took approximately 700 steps to converge to the steady-state with 
a fixed CFL = 0.8. Figure 4.2b shows the computation of the LNI form of the 
second-order accurate implicit TVD scheme with CFL = lo6 after 25 steps. Both the 
explicit and implicit TVD schemes produce similar high resolution solutions (with 
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FIG. 4.2. Density distribution: supersonic inflow, subsonic outflow; 20 spatial intervals; (-- h 
exact; (O), numerical. (a) Explicit TVD method, CFL = 0.8, 700 steps; (b) implicit TVD method, 
CFL = 106, 25 steps; (c) conventional implicit method, CFL = 10, 50 steps; (d) first-order implicit flux- 
vector splitting method, CFL = 106, 25 steps. 

6 = 0.125 in Eq. (2.17b)). From numerical experiments, we found that artificial 
compression is not necessary for this one-dimensional problem. 

The convergence criterion is based on the condition that all the components of 
the right-hand side of Eq. (3.8b) are less than or equal to 10 -’ for all grid points. 
The implicit TVD method requires approximately triple the CPU time per time- 
step of the explicit TVD method but results in an enhanced convergence rate. 

A steady-state solution can be reached in 25-30 steps with CFL ranges from lo6 
to 10’. The steady-state solution profiles are independent of the CFL number. The 
number of steps for convergence monotonically decreases as the CFL number 
increases. However, the reduction in the number of steps is less pronounced for 
CFL number in the range from lo3 to 106. There are four primary factors affecting 
the convergence rate for CFL numbers higher than lo3 : (1) the initial condition (or 
the initial guess), (2) the numerical boundary conditions, (3) the interaction of 
nonlinear waves, and (4) the machine accuracy of the VAX 11/780. 

Figure 4.2~ shows the converged solution by a conventional implicit method with 
CFL = 10. The oscillation near the shock is typical of a three-point central spatial 
difference scheme. The experimentally determined maximum CFL number is 
around 10 with the above initial and numerical boundary conditions. (We can 
improve the stability by adding an implicit second-order numerical dissipation 
term.) Figure 4.2d shows the converged solution by the first-order flux-vector 
splitting method [20] with CFL = 106. Again, the steady state is reached after 
25-30 time-steps. The solution is very smeared but is independent of the CFL num- 
ber. From the results, we can see a definite improvement in shock resolution by the 
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TVD schemes over the conventional methods. The implicit TVD scheme requires 
approximately 80% more CPU time per time-step than the conventional implicit 
method. Moreover, there is a dramatic increae in the convergence rate of the 
implicit TVD scheme over the explicit TVD scheme. 

5. APPLICATIONS TO TWO-DIMENSIONAL COMPRESSIBLE 
INVISCID EQUATIONS OF GAS DYNAMICS 

In this section we describe how to formally extend the one-dimensional implicit 
TVD scheme to an alternating direction implicit (ADI) version for the two-dimen- 
sional compressible inviscid equations of gas dynamics (Euler equations). This is a 
formal extension of the TVD scheme from one dimension to two dimensions. At the 
present state of development, there is not yet a similar theoretical analysis of the 
TVD properties for the approximation of two-dimensional hyperbolic equations. In 
here, we explore the use of an AD1 approach as a possible relaxation procedure to 
obtain a steady-state numerical solution. Included in this section are (1) a detailed 
description of the analogue of each of the terms in Eqs. (4.2)-(4.6) for the two- 
dimensional Euler equations, (2) a discussion on the extension of the explicit and 
implicit TVD schemes to two dimensions, (3) Roe’s form for the Jacobian matrices 
A( Uj,k, qj+ ,,) and B( Uj,k, Uj,k+ 1 ), (4) an algorithm to compute UT: l by the AD1 
approach, (5) a description of a numerical example, and (6) a discussion of the 
numerical results. 

5.1. Numerical Fluxes in Two Dimensions 

In two spatial dimensions, the Euler equations of gas dynamics can be written in 
the conservative form 

aU dF(U)+aG(U) o 
at+- -= ) . a 

where 

‘= [i]’ F= [t;;;;;p; G= [,,;;;,1’ :::b: 

with m = pu and n = pu. The primitive variables are the density p, the velocity com- 
ponents u and v, and the pressure p. The total energy per unit volume e is related to 
p by the equation of state for a perfect gas 

p=(y-l) 
[ 
e--(m2+n2) ) 

2P 1 (5.lc) 

where y is the ratio of specific heats. 
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Let A denote the Jacobian matrix aF(U)/aU whose eigenvalues are 

(a!.,& a.;,a4,)=(U-c, u, u+c, u), (5.2) 

where c is the local speed of sound. The right eigenvectors of A form the matrix 
R., = (R.:, Rf, Rt, R4,) given by 

1 1 1 0 
R,= u-c I.4 USC 0 , 

I 

(5.3a) 
V v V 1 

H-UC (u’+v*)/2 H+uc v 

where 

and 

H/+y 
g-1 (5.3b) 

;(b,+f) ;( -b,u-;) ;( -b,a) ;b2 

R,‘= 
1 -b, 

;(b,d) ;(-;;;+;j ;(:;lvj ;;I 

-V 0 1 0 I 

(5’3c) 

with 

b =b (u2+v2) 
I 2 2 ’ 

,+:)-I, 
c 

(5.3d) 

(5.3e) 

Let the grid spacing be denoted by Ax and Ay such that x= jAx and y = kdy. 
Using the same notation as in Section 4, the vector a of Eq. (3.6) for the x direction 
(omitting the k index) is 

(aa - bb)/2 

Ai, 2/2~ - aa 

I 

3 

(au + bb)/2 (5.4a) 

Aj+ tl2n --VI+ 1/2Af+ 112~ 



IMPLICIT TVD SCHEMES 349 

where 

4 l/2 + VI’+ 112 Aj, 1/2p 
2 

-a/+ 1/2Aj+ 1,2m -VI+ lpAj+ wtn I 3 (5.4b) 

bb = CA, + 112 m-ui. 1/2Ai+ I,zP~/c~+ 112. (5.4c) 

Similarly, let B denote the Jacobian matrix aG(U)/aU whose eigenvalues are 

(a,:,, a.$ a:, a:) = (v-c, v, v + c, v), (5.5) 

where c is the local speed of sound. The right eigenvectors of B form the matrix 
R,. = (I?:., R,f , R.:, R-Z) given by 

1 1 1 0 

u u u 1 1 R,= 

and 

R.,: ’ = 

(5.6a) 

3 (5.6b) 

with 6, and b2 defined in Eqs. (5.3d) and (5.3e). The vector c1 for the y direction 
(omitting the j index) is 

4 + l/2 
2 

‘k + l/2 

4,112 
4 

‘k t 112 

where 

(cc - dd)/2 
= A~+,,~P-cc 

(cc + dd)/2 
A k+,/2m--k+,/2Ak+&’ 

(5.7a) 

-“k+1/2 A k+3/2m-Vk+1/2 A k+lf2n ) 
I 

dd= [A k+1/2n2Vk+1/2Ak+I,ZPIICk+1,2. 

(5.7b) 

(5.7c) 
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As mentioned previously, the simplest form for U,, ,/2,k is 

u ,+ 112.k = (U,+ 1,k + U,.k)P. 

Roe’s special form of the averaging in the x direction is 

424 

ui + L/2,k = 
, + I,k + U,,k 

B+l ’ 

v, i 1/2,k = 
Dvj+ l,k + v],k 

D+l ’ 

Hi + 1j2.k = 
DHj + 1.k + Hj.k 

D-t1 ’ 

r 1 

(5.8) 

(59a) 

(59b) 

(5.9c) 

1 
‘:+ 1/2,k = (Y - 1 ) 

1 
H, + 1/2,k - 2 (U;, ,,2,k + u;+ ,,2,,)], (5.9d) 

(5.9e) 

(5.9f) 

Therefore to use Roe’s averaging for the x differencing, all we 
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‘j+ l/2 E (4)j+ l/2&3 

‘ic + l/2 E Ca:)j,k + l/2) 

y:+ l/2 = Yk),+ I/Z.k, ( 

?: + l/2 z (Y:)j,k + l/25 

where uf, is defined in (5.2), ut is defined in (5.5), and 

I 
Yj+ l/2 = 

i 
cs;+ 1 - k$lf$+ l/2, a: + 1l2 # 0, 
0, 

I 
‘j+ l/2 =o 

and 

k:+l-g:)/4+1,2? 4+1,2+=07 
I 

3 ‘k+ l/2 = 0. 

(5.1Oc) 

(5.10d) 

(5.10e) 

(5.10f) 

(5.W 

(5.10h) 

Here, it is understood that the scalar values and the vector R’ in the summation 
in Eqs. (5.lOa) and (5.10b) are values of (5.2)(5.9) evaluated at the corresponding 
x and y coordinates. For simplicity, we omitted the k index inside the summation 
sign of Eq. (5.10a), and omitted the j index inside the summation sign of 
Eq. (5.10b). 

5.2. Extension of the Explicit TVD Scheme by the Fractional Step Method 

In this subsection, we are going to review the extension of the explicit TVD 
scheme to two dimensions by the fractional step (time-splitting) method. We will 
also give a discussion on the use of the artificial compression term. Later, we will 
show a comparison between the explicit and implicit TVD schemes. 

The explicit TVD scheme can be implemented in two space dimensions by the 
method of fractional steps as 

that is. 

where q+ 1,2 k and c;, + 1,2 are defined in (5.10). 
To retain the original time accuracy of the method, we use a Strang type of frac- 

tional step operators, namely, 
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or for steady-state calculations, we use 

where 9: denotes the operator with the time-step equal to At/2 and CJ$. is the 
initial condition. 

We may enhance resolution the same way as discussed in Section 2.5 by increas- 
ing the value of $+, 2 (and y; + ,;2) in Eqs. (5.1Og) and (5.10h). To accomplish this, 
we increase the size of the corresponding gi in (3.7c), for example, by multiplying 
the right-hand side of (3.7~) by [ 1 + w’f$]; i.e., 

with 

g; = [ 1 + do;] g;, O’>O, (5.15a) 

(5.15b) 

where x:+ ,;2 is defined by (5.4a). Similarly, we can obtain & = [ 1 + &I:] g: for the 
y direction. 

A preliminary experiment in two-dimensional calculations using an explicit TVD 
scheme by the fractional step approach indicated a need for such an enhancement 
mechanism [2]. The artificial compression term is especialy needed for the linearly 
degenerate characteristic field, i.e., a, = u and a.L. = u. We will use this form of the g 
function for our two-dimensional numerical experiments. 

5.3. Extension of the Implicit Scheme by the Alternating Direction Implicit Method 

The two-dimensional LNI form of (3.8) for the Euler equations of gas dynamics 
(5.1) can be written as 

I~-~‘J,+~,~.~A~+~‘z.~+~~‘J~ , 2.kAimI 2.k 

-~“K,.k+,:?A,.k+1,2+j.‘K,:k~,~2A,,h ,iZ](ljrr+l-~) 

= -jb~‘[~+,,.,k-~p ,#2,k] -i.“[G;,+,,,-& / 1 t.k l/2 1 (5.16a) 

with i.’ = At/A.u, 1.“ = AtlAy, where 

J,‘t ,;2,k = (R, diag(CS ) 4 ‘I;+ ,,Z,k’ (5.16b) 

K&t I/2 = (RF diag(C,’ ) R.,~ ‘,;k + ,12, (5.16~) 

and 

cc: Q+ ,,2,k = 4 LQ(4 + Y:) i (at + Y’,)];, 1,&k, (5.16d) 

CC’ );k+ 112 = 4 LQ(4 + Y;.) f (Qf + vf.)l:,k+ 112. 

I= 1, 2, 3, 4 (5.16e) 
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It is well known that solving the two-dimensional implicit difference equation 
(5.16) is very costly. This leads to the popularity of using the alternating direction 
implicit (ADI) method to solve gas dynamics problems. Formally, we can write an 
ADI form of (5.16), 

[I- ‘1”J; 1/2,kAi+ 112.k + A”JJ”- 1/2,kAJ- L/2,kl D* 

= -‘;[q+ 1/2,k - ep 1,2,kl - n~“[G;k+ ,,2 - G;k- 1,219 3 

[I- “‘KG+ 1/2Aj,k+ 112 + A’K$- 1/2A.j,k- l/21 D= D*, 

u n+l= lJ”+D. 

(517a) 

(5.17b) 

(5.17c) 

Note that there is not yet a theoretical analysis of the TVD properties for two- 
dimensional scalar conservation laws or constant coefficient hyperbolic systems. 
For reference purposes, we refer to (5.17) as the AD1 form of the implicit TVD 
scheme for the “frozen” coefficient two-dimensional Euler equations. 

Given uj$, for each (j, k), we now list the operations needed to calculate U;: l 
by the AD1 method (assuming a given CFL number): 

0) Compute Uj,k = mj,k/p,j,k7 vi,k = nj,klPi,k and Pj,k. 

(ii) Compute Uj+ 1/&k, Vi+ 1/2&, and ci+ I/2,k from (5.8) or (5.9), calculate 

M.y=max (I”j+ II2,kl + cj+ 1/2,kh 
t.k 

M.L, = max (Iv,+ 1/2,kl + cj+ 1/2,k) 
i.k 

evaluate cif + ,,2, I= 1,2, 3,4, by (5.4a) (remember that the k index is omitted from 
the equation), and define 

where p is the prescribed CFL as input 

(iii) Compute (afi)j+ 1/2,k by w), g,!+ 1/2,k by (3.7C), with (a;),+ 1,2,k as a:+ 1,2 

in (3.7~). 

(iv) Compute (Yl)j+ 1/2.k by (5.1og), and Fj+l/T,k by (5.lOa) and relation 
(5.3a). 

(v) Compute C.: by (5.16dL with z = (Uk)j+ I/z& + (Y;)~+ I/Z,k in Eq. (2.18a). 
(vi) Compute J,‘+ ,,2,k by (5.16b). 

(vii) Compute Uj,k + l/2, vj,k + 1,2r and cj.k + 1,2, calculate 

M.y = max (1 uj.k + 112 1 + cj,k + l/2), 
i,k 

& = max ( 1 Oj.k + 112 1 + cl.k + l/2)? 
i,k 

evaluate c$ + ,,2, I = 1, 2, 3,4, by (5.7a) (remember that the j index is omitted from 
the equation), and define 

1” = AtjAy = p/rn,x (M,, M,). 
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(viii) Compute (a$)j,k+1/2 by (5.5), gj,,+ l,2 by (3.7~1, with (ai)j,k+ l/z as ai+ l,2 
in (3.7~). 

(ix) Compute (~f,)/,~ + 1,‘2 by (LlOh), and G,., + ,,* by (5.10b) and relation 
(5.6a). 

(x) Solve Eq. (5.17a) for D*. 

(xi) Compute C,? by (5.16e), with z = (a.:.)++ i,* + (yf,)++ ,,2 in Eq. (2.18a). 
(xii) Compute KS+,,* by (5.16~). 
(xiii) Solve Eq. (5.17~) for U;: I. 

5.4. Numerical Example 

To examine the applicability of the new method for two-dimensional shock 
calculations, we consider a simple inviscid flow field developed by a shock wave 
reflecting from a rigid surface (Fig. 5.1). The steady-state solution can be calculated 
exactly and thus can aid us in evaluating the quality of the numerical method. 
Figure 5.1 shows the indexing of the computational mesh. 

Initial conditions. Initially, the entire flow field is set equal to the free stream 
supersonic inflow values plus the analytical boundary conditions as described 
below. 

Analytical boundary conditions. The boundary conditions are given as follows: 
(a) supersonic inflow at j= 1, k = l,..., K, which allows the values Ul,k to be fixed at 
free stream conditions; (b) prescribed fixed values of U,,, at k = K, j = l,..., J, which 
produce the desired shock strength and shock angle; (c) supersonic outflow at 
j=J,k=l >..., K, (d) a rigid flat surface at k = 1, j= l,..., J which can be shown to 
be properly represented by the condition u = 0, with the additional condition 
aplay = 0 at k = 1 from the normal y-momentum equation. 

Numerical boundary conditions. The supersonic outflow values UJ,k, 
k = l,..., K- 1 are obtained by zeroth-order extrapolation, i.e., 

UJ,k = uJ ~ l,k 7 k = l,..., K- 1. (5.18) 

I=1 2 3 J 

FIG. 5.1. Indexing of computational mesh for shock reflection problem. 
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The values of pj,i, mj,l on the rigid surface with j= l,..., J are also obtained by 
zeroth-order extrapolation, i.e., 

Pj,l = Pj,2, mj,l =mj,2, j= l,..., J. (5.19) 

Three different methods were used in approximating ap/ay = 0 to get ej,,, 
j = l,..., J: 

(a) Normal derivative of e equal to zero (first order) 

ej.1 = ej,2. (5.20a) 

(b) Normal derivative of e equal to zero (second order) 

ej.1 = (4ej,2 - ej.3 )/3. (5.20b) 

(c) Normal derivative of p equal to zero (second order) 

Pj,l = t4Pj,2 - Pj,3)139 (5.20~) 

(5.20d) 

Equation (5.20a) together with Eq. (5.19) is an approximation to pj,, = pj,2, i.e., a 
first-order approximation for the normal derivative of p equal to zero. Equation 
(5.20b) together with Eq. (5.19) is an approximation to Eq. (5.20~). We use Eq. 
(5.20a) or (5.20b) for the implicit method mainly because of their ease of 
application with implicit numerical boundary conditions. From the numerical 
experiments, we found that Eq. (5.20b) and (5.20~) produce better numerical 
solutions near the wall than Eq. (5.20a). 

Since this implicit TVD scheme is a 5-point scheme (in each spatial direction), we 
also need the values of g and 8 at the boundaries. For convenience, we will use 
zeroth-order extrapolation. 

5.5. Discussion of Numerical Results 

The purpose of these numerical experiments is threefold: 

(i) To test the performance of the AD1 form of the implicit TVD scheme 
(5.17) on the shock reflection problem. For reference purposes, we denote scheme 
(5.17) as STVD. 

(ii) To test the performance of scheme (5.17) with yf,= y$=O in (5.16d) and 
(5.16e) (i.e., the linearized form (2.35) with first-order spatial difference for the 
implicit operator) on the shock reflection problem. For reference purposes, we 
denote this method as FTVD. 

(iii) To test the effect of the choice of 0 and Q function in (2.22e) and (2.22f), 
and the artificial compression term in (5.15) on the convergence rate and resolution 
of the above two-dimensional problem. 
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0 1 2 3 4 
x 

FIG. 5.2. The exact pressure solution for the shock reflection problem. 

In all of the numerical experiments, the incident shock angle II/ was 29” and the 
free stream Mach number M, was 2.9. The computational domain was 0 < x 6 4.1, 
and 0 < y < 1, with a uniform grid size of 61 x 21. The appropriate analytical boun- 
dary conditions were applied along the boundaries of the domain. Only pressure 
contours and pressure coefficients will be illustrated. Here, the pressure coefficient is 
defined as 

2 p1 c =- -- 
( i p YMZ, Pz ’ 

with y the ratio of specific heats, and px the free stream pressure. The exact 
minimum pressure corresponding to tj = 29” and M, = 2.9 is 0.714286 and the 
exact maximum pressure is 2.93398. The exact pressure solution and the com- 
putation domain is shown in Fig. 5.2. Forty-one pressure contour levels between 
the values of 0 and 4 with uniform increment 0.1 were used for the contour plots. 
The pressure coefficient was evaluated at y =OS for 0 6 x< 4.1. All of the com- 
putations for the two-dimensional shock reflection problem were done in single 
precision on a CDC 7600 computer. 

Comparison of method. Pressure contours and the pressure coefficients 
evaluated at y = 0.5 are shown in Fig. 5.3 for four different methods. Figure 5.3a 
shows the numerical result of the explicit TVD scheme by the fractional step 
method (5.14) with 

Q(z) = z2 + +, (5.21a) 

a(z) = $. (5.21b) 

It took approximately 350 steps to converge with a fixed CFL = 0.8. The average 
smearing of the shocks is two points. We found that with Eq. (5.21), a slightly bet- 
ter shock resolution was obtained than Q(Z) in (2.17b) for the explicit method. 
Note that we can get (5.21b) by simply substituting (5.21a) into (2.28) with q = 0. 
Figure 5.3b shows the steady-state solution of a conventional implicit (ADI) 
method [ 181 with CFL = 1.0 after approximately 600 steps. The oscillations are 
spread over 8 grid points. The experimental maximum CFL number for this con- 
ventional implicit method is around 1.5. Figure 5.3~ shows the numerical result of 
the AD1 form of the implicit TVD scheme (5.17) (STVD method with 6 = 0.125 and 
0 in Eq. (2.22e)) after 300 steps with CFL = 3. The experimental maximum CFL 
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FIG. 5.3. Pressure contours and pressure coefficients for the shock reflection problem. (a) Explicit 
TVD method, 350 steps, CFL = 0.8; (b) conventional implicit method, 600 steps, CFL = 1; (c) implicit 
TVD method (STVD), 300 steps, CFL = 3; (d) implicit TVD method (FTVD), 60 steps, CFL = 6. 

501/51/3-3 
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FIG. 5.4. Pressure contours for three different CFL numbers. (a) 250 steps, CFL = 50, (b) 250 steps, 
CFL = 500, (c) 250 steps, CFL = 1000. 

number for this method is 5 under the CFL sampling sequence of (1,2,3,5, 10,20). 
Figure 5.3d shows the numerical result of the FTVD method (with 6 = 0.125 and CJ 
in Eq. (2.22e)) after 60 steps with CFL = 6. The average smearing of the shocks is 2 
points. The convergence rate of the FTVD method is far better than the STVD 
method. It was found that the optimal CFL (with At fixed) for fastest convergence 
rate with the FTVD method is between 5 and 10. 

To show that the convergence rate is not a monotone decreasing function of CFL 
number for the FTVD method, Fig. 5.4a illustrates the same method as Fig. 5.3d 
after 250 steps with CFL = 50. The solution is not quite convergent yet. Figure 5.4b 
shows the same method after 250 steps with CFL = 500 (we ran for another 400 
steps, without reaching steady state). Figure 5.4~ shows the same method after 250 
steps with CFL = 1000. 

A primary factor affecting the stability and convergence rate of the ADI form of 
the implicit TVD scheme is the approximate factorization error. 

The choice of u and Q functions, and the art$cial compression term. The primary 
difference in shock resolution between the explicit and implicit TVD methods of 
Figs. 5.3a and c is the result of using a different 0 and Q. Equations (2.22e) and 
(2.17b) are used for the implicit scheme and Eq. (5.21) is used for the explicit 
scheme. We have found that the shock resolution is somewhat degraded by the 
explicit TVD scheme if IS in (2.22e) is used instead of (5.21). The particular choice 
of c in (2.22e) is especially appropriate for the AD1 method since the steady-state 
solutions are independent of At. 
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All of the TVD schemes were operated with an artificial compression term 
(5.15a) with o’ = 2,1= 1,2,3,4, except for the FTVD method. For the FTVD 
method, we used o1 = o3 = 1 and o* = o4 = 2. We found that with this set of w’, we 
get a faster convergence rate. 

Approximate CPU time and actual implementation of the numerical flux 
functions. The conventional implicit method requires approximately twice the 
CPU time per time-step as the explicit TVD scheme. The implicit TVD method 
requires approximately 2.5 times more CPU time per step than the conventional 
implicit method. 

In actual implementation of the explicit and implicit TVD methods into a com- 
puter code, the following form of the numerical flux q+ ,,2,k (similarly for (!?E~+ 1,2) 
was used instead of (5.10) 

q+ 1/2,k = ~[F(uj,k)+F(ui+,,k)l+~ i [5:+1/2af+~,z(sf+g:+,) 
/= I 

- Q(a:+ 1/z + r:+ I/2) a:+ 1,21 Rfc 1/23 

with 

r:+ L/2 = 1 + f~‘max(Oj!, $+ I)r 

where 0: is defined in Eq. (5.15b), and 

(5.22a) 

(5.22b) 

gf=S.max[O,min((a:+,,,I, S.C$-,,,)I, 

S = skn(af + ,,2), 
(5.22~) 

and 

Yf+,,2=~j+,,2~;+,,2 ~+‘-g:‘!“:,l,2, (522d) 

That is, the oj+ 1,2 has been taken out from the definition of g,! in Eq. (3.7~) for sim- 
plicity and better resolution. Furthermore, the artificial compression is incorporated 
into the definition of the numerical flux function. 

6. CONCLUDING REMARKS 

The nonlinear, spatially second-order accurate, unconditionally stable implicit 
TVD scheme in a linearized nonconservative form has been applied to obtain 
steady-state solutions for the one-dimensional compressible inviscid equations of 
gas dynamics. This linearized form of the implicit TVD scheme is only conservative 
after the solution reaches steady state. Numerical experiments for a quasi-one- 
dimensional nozzle problem show that the experimentally determined stability limit 
correlates exactly with the theoretical stability limit for the nonlinear scalar hyper- 
bolic conservation laws. Steady-state solution can be reached in approximately 25 
steps. 
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We have formally extended the second-order accurate implicit TVD scheme by 
an AD1 method for two-dimensional calculations. Numerical experiments with the 
AD1 form (5.17) for a shock reflection problem show the gain in efficiency is not as 
pronounced as the one-dimensional counterpart. 

A spatially first-order accurate left-hand side (i.e., by setting y’, = $, = 0 in (5.11 b) 
and (5.1 lc) of the ADI form provides better stability and a faster convergence rate. 
A steady-state solution can be reached in approximately 60 steps for a two-dimen- 
sional shock reflection problem. Numerical experiments also show that the rate of 
convergence is very sensitive to the CFL number. The iteration count grows rapidly 
when the calculation is carried out away from an optimal time-step. 

More rigorous analyses of the influence of approximate factorization error and 
the influence of various ways of linearizing the implicit operator on the stability and 
efficiency of the method are needed. This will be the subject of a forthcoming paper 
c191. 
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